

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

HOWTO: Build and use Smil on Windows

This guide is an attempt to describe the building process of the
[Smil](https://smil.cmm.mines-paristech.fr/doc/index.html) image
processing library on the Microsoft Windows platform, from scratch,
using the native Visual C++ compiler.

Dependencies

	The [Visual Studio Build
Tools](http://landinghub.visualstudio.com/visual-cpp-build-tools) is
a set of compilers and libraries to build native software on MS Windows.

	[CMake](https://cmake.org/download/) is the build system used by Smil.

	[Swig](http://www.swig.org/download.html) is used to generate Python
bindings from the Smil C++ API. Select the swigwin version, which
contains the Windows pre-built executable.

	[Anaconda](https://www.anaconda.com/download/) is a Python
distribution loaded with scientific libraries, such as Numpy or
Scipy. It also provides some useful libraries (libcurl, libfreetype,
libpng, libjpeg, libtiff, zlib, Qt). Choose the Python3 variant, since
the Python2 one is known to be not fully compatible with Smil during
the MSVC build.

	[Git](https://git-scm.com/downloads) may also be needed to clone the
Smil repository.

Installing the dependencies

	Download and install a sane keyboard layout, such as
[Bépo](http://bepo.fr/wiki/Accueil)

	Install the VS Build Tools, CMake and Git (in whichever
order). Make sure that CMake is added to the PATH environment
variable for all users. Reboot Windows.

	Install Anaconda for all users, and add Anaconda to the PATH, in
order for CMake to automatically find the dependencies.

	Download and decompress the swigwin archive. Edit the PATH
environment variable and add the Swig executable folder.

Build process

	Get the Smil source (using Git?).

	Create an empty build directory near or inside the Smil sources
folder.

	Open a native Visual Studio console, corresponding to your
Windows version (x86 for a 32 bits Windows vs. x64 for 64 bits)

	In this console, navigate using cd to the build directory you
just created.

	Launch CMake with cmake-gui path/to/the/Smil/sources/folder.

	Select the Nmake back-end.

	Check the WRAP_PYTHON option and click on Configure. Some
errors may be popping in the output console.

	[Numpy] Set the PYTHON_NUMPY_INCLUDE_DIR to
path/to/anaconda/Libs/site-packages/numpy/core/include

	Click on Configure then, if there is no errors, on Generate.

	Go back to the Visual Studio console, and type nmake. Wait for
it…

	Set the PYTHONPATH environment variable: set
PYTHONPATH=path/to/build/folder/lib

	Launch Python and try to import Smil: import smilPython

Caveats

	With Anaconda2 (Python 2), some embedded libraries cause link
errors. One solution is to install a separate
[Qt](https://www.qt.io/download) run-time, and prepend it to the
PATH environment variable (before Anaconda paths), to be detected by
CMake.

	OpenMP is not (yet) supported by Smil with MSVC

	Cannot build a debug version of Smil with the Python wrapper,
because Anaconda does not provides any Python library with debug
symbols (python**_d.lib). That’s why CMake sets automatically the
build type to Release when asking for the Python wrapper on Windows.

Alternatives

Using the Cygwin environment

[Cygwin](https://cygwin.com/install.html) tries to replicate an Unix
environment inside Windows. It provides a set of compatibles
open-source packages, such as GCC and Python, which can only be used
in this environment.

Pros

	An Unix-like environment.

	A package manager with quite a few open-source packages.

Cons

	Still missing some packages, such as python-scipy, which has to be
manually installed with pip after its dependencies.

	We did not find any way to install pyopencv or call OpenCV from
Python inside Cygwin.

Using Clang/LLVM with the MSVC back-end

[Clang/LLVM](http://releases.llvm.org/download.html) is a
multi-platform, open-source, C/C++ compiler software. It can link to
Visual C++ libraries, thus providing a native alternative to the
Microsoft C++ compiler. Google has managed to use it to [build its web
browsers Chrome and
Chromium](http://blog.llvm.org/2018/03/clang-is-now-used-to-build-chrome-for.html).

The Visual Studio Build Tools are still needed, though.

To use it, change the CLANG_CXX_COMPILER option to point to
LLVM/bin/clang-cl.exe, a binary that accepts MSVC’s cl.exe CLI
flags.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

